More than Random

Noise Functions

I My Background

I My Background

I Goal

Goal:

You are aware of three cool noise functions

Not the Goal:

You understand how these noise functions work

I What is a Noise Function?

Noise Function:

Means to generate random numbers (at least in this context)

I Scenario

Scenario

Use a simulation to train a robot to solve different tasks

Task
Measure the temperature

Problem

How to model sensor noise?

Properties

- uncorrelated
- can be averaged out with enough samples

Perlin Noise

Properties

- Continous
- n-dimensional

Poission Disk Sampling

III Poission Disk Sampling

Task

- Collect Battery == good
- More collected Batteries == more good

III Poission Disk Sampling

Problem

Clusting, can't score better ratings if cannot leave local cluster

III Poission Disk Sampling

Properties

- Equally spaced samples
- aka Blue Noise

Task

Find the exit of a maze

Problem

Generate mazes based on an example

Image adapted from [3]

Properties

- Output locally similar to input
- n-dimensional

Properties

- Output locally similar to input
- n-dimensional

Wrap Up

V Wrap Up

Random Noise

- uncorrelated
- downsides as model for sensor noise

Perlin Noise

- Correlated
- Great for proceduralGeneration

Poission Disk Sampling

- Aim for certain density
- prevent clustering

Wave Function Collapse

- Generate more from less
- Can be tricky to tune

V Further Reading

- 1. Perlin, Ken (1985). <u>An Image Synthesizer</u>. SIGGRAPH 19.
- 2. Bridson, Robert (2007). <u>Fast Poisson disk sampling in arbitrary dimensions</u>. SIGGRAPH 07.
- 3. Wave Function Collapse Example Repository on Github
- 4. Herbert Wolverson's talk on "Procedural Map Generation Techniques" on Youtube

Thank you for listening!

sedetius.com/nook22

[QR-Code, not noise]

V Keep in Mind

Layer Noises

Combine different noises for different purposes. Layer noises of the same type to create fractal noise.

Resource Consumption

Some implementations require wast amounts of memory. Use a single, static instance for the whole program.

Safety

For safety critical systems
noise might not be good
enough. In these cases you
need to use real sensor data.